AWIFS ORTHO RECTIFIED TILES

National Remote Sensing Centre

Introduction

This document briefly describes Resourcesat-1 & AWiFS sensor, Orthorectified tiles covering Indian region, generation methodology and its accuracies.

Tiles Specification

Tile related

Tile Size : 1 deg x 1degCollar : 20 pixels

Naming Convention : As per SOI OSM

Projection related

Projection : Geographic Lat/Long

• Datum : WGS-84

• Resolution : 0.000450 (~50m).

Image Related

• Image File Format : GeoTIFF

Number of Bands : 4 (BAND 2, 3, 4, 5)

• Radiometric : 10 bits

Resolution (Packed as 16bit)

• Correction level : Orthorectified

Naming Convention

Image File naming convention contains the following information

- o Sensor
- o SOI OSM 1deg x 1deg area
- o Path & Row
- Date of Acquisition
- o Band Information

FileName: SS-TTTTT-PPP-RRR-DDMMMYY-BANDN.tif

SS - AWIFS Sensor (AW / L3)
TTTTT - SOI OSM 1deg x 1deg tile

PPP - Path RRR - Row

DDMMMYY - Date of Acquisition

N - Band number (2, 3, 4, 5)

Ex: AW-NC43E-099-063-06Feb10-BAND2.tif

ResourceSat-1

The RESOURCESAT-1 (IRS-P6) is envisaged as the continuity mission to IRS-1C/1D, with enhanced capabilities both in the payload and the platform, to meet the increasing demands of the user community. The objectives of the mission are:

- * To provide continued remote sensing data services on an operational basis for integrated land and water resources management at micro level, with enhanced spectral and spatial coverage and stereo imaging.
- * To further carry out studies in advanced areas of user applications like improved crop discrimination, crop yield, crop stress, pest/disease surveillance, disaster management etc.,.

The life of the mission is planned to be five years. The satellite was launched by the indigenously built Polar Satellite Launch Vehicle on October 17, 2003. The orbit parameters of IRS-P6 are same as IRS-1C.

Orbits/cycle	341
Semi major axis	7195.11 km
Altitude	817 km

Inclination	98.69 deg
Eccentricity	0.001
Number of orbits/day	14
Orbital period	101.35 minutes
Repetivity	24 days
Distance between	117.5 km
adjacent paths	
Distance between	2820 km
successive ground	
tracks	
Ground trace velocity	6.65 km/sec
Equatorial crossing	10.30 A.M (at
time	descending node)

The payload system of IRS-P6 consists of three solid state cameras:

- 1. A high resolution multispectral sensor LISS-IV
- 2. A medium resolution multispectral sensor LISS-III
- 3. An Advanced Wide Field Sensor AWIFS

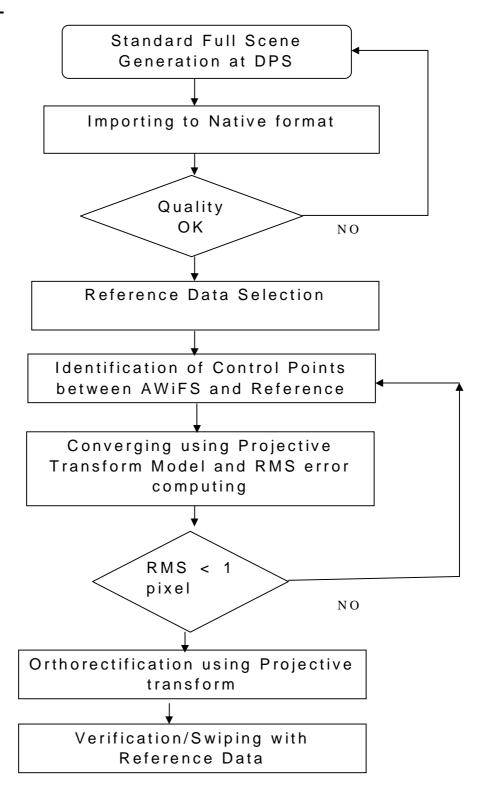
AWiFS Sensor

The AWiFS camera provides enhanced capabilities compared to the WiFS camera on-board IRS-1C/1D, in terms of spatial resolution (56 m Vs 188m), radiometric resolution (10 bits Vs 7 bits) and Spectral bands (4 Vs 2) with the additional feature of on-board detector calibration using LEDs. The spectral bands of AWiFS are same as LISS-III.

The AWiFS camera is realized in two electro-optic modules viz.,. AWiFS-A and AWiFS-B, each containing four band assemblies. A combined swath of 740 Km is realized by mounting the two modules on the Deck, with their optical axes tilted by 11.94 deg away from the + yaw axis in opposite direction. With this

mounting, a side lap of 128 pixels i.e., about 7.2kKm, is available in the combined swath.

Major specifications of AWiFS sensor.


IGFOV	56 m (nadir)
	70 m (at field edge)
Spectral Bands	B2, B3, B4 and B5
Swath	740 km (combined)
	370 km each head
Saturation radiance	B2 - 53
(mw/cm 2 /sr/micron)	B3 - 47
	B4 - 31.5
	B5 - 4.64
Integration time	9.96 msec
Quantization	10 bits
No. of gains	16

Ortho-rectification process

The ortho-rectification process is carried out for correcting the following errors associated with satellite images

- o Terrain relief error
- o Scale variation
- Sensor attitude / orientation
- o Internal errors.

Flow Chart

The following steps were followed broadly to correct the image data

- 1. Control points were identified between Input AWiFS Full scenes and Reference data.
- 2. Height was obtained from Reference DEM.
- 3. Around 20-30 points were identified in such way that these are distributed across all corners of image.
- 4. Projective transform is used for correcting AWiFS image.

Procedure:

- 1. Importing to AWiFS full scenes
- 2. Image Analysis package is being used for orthorectification.
- From Path/Row scheme identify the required reference data in which AWiFS scene is covered.
- 4. Projective transform is used as a registration model.
- 5. Carto DEM & other reference DEMs were given as a elevation source.
- 6. Around 20-30 GCPs are identified and distributed across the scene.
- 7. Repeat the process till reached RMS error is less than 1 pixel.
- 8. Ortho-rectification was carried out.
- 9. Registered image is verified with reference data using the swipe option.

Accuracy

The plannimetric accuracy of ortho-rectified data is 100m in CE90.